- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Banerjee, Sanjay_K (3)
-
Akinwande, Deji (2)
-
Chou, Harry (1)
-
Disiena, Matthew (1)
-
Ge, Ruijing (1)
-
Gu, Yuqian (1)
-
Hus, Saban_M (1)
-
Jeon, Yu-Rim (1)
-
Juneja, Rinkle (1)
-
Jung, Yeonwoong (1)
-
Kim, Dongyoon (1)
-
Kutagulla, Shanmukh (1)
-
Lee, Jack_C (1)
-
Liang, Liangbo (1)
-
Lin, Jung‐Fu (1)
-
Maity, Nikhilesh (1)
-
Meng, Xianghai (1)
-
Mohan, Sivasakthya (1)
-
Okogbue, Emmanuel (1)
-
Rai, Amritesh (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Ge, Ruijing; Wu, Xiaohan; Liang, Liangbo; Hus, Saban_M; Gu, Yuqian; Okogbue, Emmanuel; Chou, Harry; Shi, Jianping; Zhang, Yanfeng; Banerjee, Sanjay_K; et al (, Advanced Materials)Abstract Non‐volatile resistive switching (NVRS) is a widely available effect in transitional metal oxides, colloquially known as memristors, and of broad interest for memory technology and neuromorphic computing. Until recently, NVRS was not known in other transitional metal dichalcogenides (TMDs), an important material class owing to their atomic thinness enabling the ultimate dimensional scaling. Here, various monolayer or few‐layer 2D materials are presented in the conventional vertical structure that exhibit NVRS, including TMDs (MX2, M=transitional metal, e.g., Mo, W, Re, Sn, or Pt; X=chalcogen, e.g., S, Se, or Te), TMD heterostructure (WS2/MoS2), and an atomically thin insulator (h‐BN). These results indicate the universality of the phenomenon in 2D non‐conductive materials, and feature low switching voltage, large ON/OFF ratio, and forming‐free characteristic. A dissociation–diffusion–adsorption model is proposed, attributing the enhanced conductance to metal atoms/ions adsorption into intrinsic vacancies, a conductive‐point mechanism supported by first‐principle calculations and scanning tunneling microscopy characterizations. The results motivate further research in the understanding and applications of defects in 2D materials.more » « less
-
Zhou, Yongjian; Maity, Nikhilesh; Rai, Amritesh; Juneja, Rinkle; Meng, Xianghai; Roy, Anupam; Zhang, Yanyao; Xu, Xiaochuan; Lin, Jung‐Fu; Banerjee, Sanjay_K; et al (, Advanced Materials)Abstract Two distinct stacking orders in ReS2are identified without ambiguity and their influence on vibrational, optical properties and carrier dynamics are investigated. With atomic resolution scanning transmission electron microscopy (STEM), two stacking orders are determined as AA stacking with negligible displacement across layers, and AB stacking with about a one‐unit cell displacement along theaaxis. First‐principles calculations confirm that these two stacking orders correspond to two local energy minima. Raman spectra inform a consistent difference of modes I & III, about 13 cm−1for AA stacking, and 20 cm−1for AB stacking, making a simple tool for determining the stacking orders in ReS2. Polarized photoluminescence (PL) reveals that AB stacking possesses blueshifted PL peak positions, and broader peak widths, compared with AA stacking, indicating stronger interlayer interaction. Transient transmission measured with femtosecond pump–probe spectroscopy suggests exciton dynamics being more anisotropic in AB stacking, where excited state absorption related to Exc. III mode disappears when probe polarization aligns perpendicular tobaxis. The findings underscore the stacking‐order driven optical properties and carrier dynamics of ReS2, mediate many seemingly contradictory results in the literature, and open up an opportunity to engineer electronic devices with new functionalities by manipulating the stacking order.more » « less
An official website of the United States government
